104 research outputs found

    KIF14 (kinesin family member 14)

    Get PDF
    Review on KIF14 (kinesin family member 14), with data on DNA, on the protein encoded, and where the gene is implicated

    Microarray Analysis Reveals Distinct Gene Expression Profiles Among Different Tumor Histology, Stage and Disease Outcomes in Endometrial Adenocarcinoma

    Get PDF
    Endometrial cancer is the most common gynecologic malignancy in developed countries and little is known about the underlying mechanism of stage and disease outcomes. The goal of this study was to identify differentially expressed genes (DEG) between late vs. early stage endometrioid adenocarcinoma (EAC) and uterine serous carcinoma (USC), as well as between disease outcomes in each of the two histological subtypes.Gene expression profiles of 20 cancer samples were analyzed (EACβ€Š=β€Š10, USCβ€Š=β€Š10) using the human genome wide illumina bead microarrays. There was little overlap in the DEG sets between late vs. early stages in EAC and USC, and there was an insignificant overlap in DEG sets between good and poor prognosis in EAC and USC. Remarkably, there was no overlap between the stage-derived DEGs and the prognosis-derived DEGs for each of the two histological subtypes. Further functional annotation of differentially expressed genes showed that the composition of enriched function terms were different among different DEG sets. Gene expression differences for selected genes of various stages and outcomes were confirmed by qRT-PCR with a high validation rate.This data, although preliminary, suggests that there might be involvement of distinct groups of genes in tumor progression (late vs. early stage) in each of the EAC and USC. It also suggests that these genes are different from those involved in tumor outcome (good vs. poor prognosis). These involved genes, once clinically verified, may be important for predicting tumor progression and tumor outcome

    A call for using natural compounds in the development of new antimalarial treatments – an introduction

    Get PDF
    Natural compounds, mostly from plants, have been the mainstay of traditional medicine for thousands of years. They have also been the source of lead compounds for modern medicine, but the extent of mining of natural compounds for such leads decreased during the second half of the 20th century. The advantage of natural compounds for the development of drugs derives from their innate affinity for biological receptors. Natural compounds have provided the best anti-malarials known to date. Recent surveys have identified many extracts of various organisms (mostly plants) as having antiplasmodial activity. Huge libraries of fractionated natural compounds have been screened with impressive hit rates. Importantly, many cases are known where the crude biological extract is more efficient pharmacologically than the most active purified compound from this extract. This could be due to synergism with other compounds present in the extract, that as such have no pharmacological activity. Indeed, such compounds are best screened by cell-based assay where all potential targets in the cell are probed and possible synergies identified. Traditional medicine uses crude extracts. These have often been shown to provide many concoctions that deal better with the overall disease condition than with the causative agent itself. Traditional medicines are used by ~80 % of Africans as a first response to ailment. Many of the traditional medicines have demonstrable anti-plasmodial activities. It is suggested that rigorous evaluation of traditional medicines involving controlled clinical trials in parallel with agronomical development for more reproducible levels of active compounds could improve the availability of drugs at an acceptable cost and a source of income in malaria endemic countries

    Genetic profiling of chromosome 1 in breast cancer: mapping of regions of gains and losses and identification of candidate genes on 1q

    Get PDF
    Chromosome 1 is involved in quantitative anomalies in 50–60% of breast tumours. However, the structure of these anomalies and the identity of the affected genes remain to be determined. To characterise these anomalies and define their consequences on gene expression, we undertook a study combining array-CGH analysis and expression profiling using specialised arrays. Array-CGH data showed that 1p was predominantly involved in losses and 1q almost exclusively in gains. Noticeably, high magnitude amplification was infrequent. In an attempt to fine map regions of copy number changes, we defined 19 shortest regions of overlap (SROs) for gains (one at 1p and 18 at 1q) and of 20 SROs for losses (all at 1p). These SROs, whose sizes ranged from 170 kb to 3.2 Mb, represented the smallest genomic intervals possible based on the resolution of our array. The elevated incidence of gains at 1q, added to the well-established concordance between DNA copy increase and augmented RNA expression, made us focus on gene expression changes at this chromosomal arm. To identify candidate oncogenes, we studied the RNA expression profiles of 307 genes located at 1q using a home-made built cDNA array. We identified 30 candidate genes showing significant overexpression correlated to copy number increase. In order to substantiate their involvement, RNA expression levels of these candidate genes were measured by quantitative (Q)-RT–PCR in a panel of 25 breast cancer cell lines previously typed by array-CGH. Q–PCR showed that 11 genes were significantly overexpressed in the presence of a genomic gain in these cell lines, and 20 overexpressed when compared to normal breast

    Triptolide (TPL) Inhibits Global Transcription by Inducing Proteasome-Dependent Degradation of RNA Polymerase II (Pol II)

    Get PDF
    Triptolide (TPL), a key biologically active component of the Chinese medicinal herb Tripterygium wilfordii Hook. f., has potent anti-inflammation and anti-cancer activities. Its anti-proliferative and pro-apoptotic effects have been reported to be related to the inhibition of Nuclear Factor ΞΊB (NF-ΞΊB) and Nuclear Factor of Activated T-cells (NFAT) mediated transcription and suppression of HSP70 expression. The direct targets and precise mechanisms that are responsible for the gene expression inhibition, however, remain unknown. Here, we report that TPL inhibits global gene transcription by inducing proteasome-dependent degradation of the largest subunit of RNA polymerase II (Rpb1) in cancer cells. In the presence of proteosome inhibitor MG132, TPL treatment causes hyperphosphorylation of Rpb1 by activation of upstream protein kinases such as Positive Transcription Elongation Factor b (P-TEFb) in a time and dose dependent manner. Also, we observe that short time incubation of TPL with cancer cells induces DNA damage. In conclusion, we propose a new mechanism of how TPL works in killing cancer. TPL inhibits global transcription in cancer cells by induction of phosphorylation and subsequent proteasome-dependent degradation of Rpb1 resulting in global gene transcription, which may explain the high potency of TPL in killing cancer

    Baifuzi reduces transient ischemic brain damage through an interaction with the STREX domain of BKCa channels

    Get PDF
    Stroke is a long-term disability and one of the leading causes of death. However, no successful therapeutic intervention is available for the majority of stroke patients. In this study, we explored a traditional Chinese medicine Baifuzi (Typhonium giganteum Engl.). We show, at first, that the ethanol extract of Baifuzi exerts neuroprotective effects against brain damage induced by transient global or focal cerebral ischemia in rats and mice. Second, the extract activated large-conductance Ca2+-activated K+ channel (BKCa) channels, and BKCa channel blockade suppressed the neuroprotection of the extract, suggesting that the BKCa is the molecular target of Baifuzi. Third, Baifuzi cerebroside (Baifuzi-CB), purified from its ethanol extract, activated BKCa channels in a manner similar to that of the extract. Fourth, the stress axis hormone-regulated exon (STREX) domain of the BKCa channel directly interacted with Baifuzi-CB, and its deletion suppressed channel activation by Baifuzi-CB. These results indicate that Baifuzi-CB activated the BKCa channel through its direct interaction with the STREX domain of the channel and suggests that Baifuzi-CB merits exploration as a potential therapeutic agent for treating brain ischemia

    Homo-PROTACs:bivalent small-molecule dimerizers of the VHL E3 ubiquitin ligase to induce self-degradation

    Get PDF
    E3 ubiquitin ligases are key enzymes within the ubiquitin proteasome system which catalyze the ubiquitination of proteins, targeting them for proteasomal degradation. E3 ligases are gaining importance as targets to small molecules, both for direct inhibition and to be hijacked to induce the degradation of non-native neo-substrates using bivalent compounds known as PROTACs (for 'proteolysis-targeting chimeras'). We describe Homo-PROTACs as an approach to dimerize an E3 ligase to trigger its suicide-type chemical knockdown inside cells. We provide proof-of-concept of Homo-PROTACs using diverse molecules composed of two instances of a ligand for the von Hippel-Lindau (VHL) E3 ligase. The most active compound, CM11, dimerizes VHL with high avidity in vitro and induces potent, rapid and proteasome-dependent self-degradation of VHL in different cell lines, in a highly isoform-selective fashion and without triggering a hypoxic response. This approach offers a novel chemical probe for selective VHL knockdown, and demonstrates the potential for a new modality of chemical intervention on E3 ligases.Targeting the ubiquitin proteasome system to modulate protein homeostasis using small molecules has promising therapeutic potential. Here the authors describe Homo-PROTACS: small molecules that can induce the homo-dimerization of E3 ubiquitin ligases and cause their proteasome-dependent degradation

    Cdh11 Acts as a Tumor Suppressor in a Murine Retinoblastoma Model by Facilitating Tumor Cell Death

    Get PDF
    CDH11 gene copy number and expression are frequently lost in human retinoblastomas and in retinoblastomas arising in TAg-RB mice. To determine the effect of Cdh11 loss in tumorigenesis, we crossed Cdh11 null mice with TAg-RB mice. Loss of Cdh11 had no gross morphological effect on the developing retina of Cdh11 knockout mice, but led to larger retinal volumes in mice crossed with TAg-RB mice (pβ€Š=β€Š0.01). Mice null for Cdh11 presented with fewer TAg-positive cells at postnatal day 8 (PND8) (pβ€Š=β€Š0.01) and had fewer multifocal tumors at PND28 (pβ€Š=β€Š0.016), compared to mice with normal Cdh11 alleles. However, tumor growth was faster in Cdh11-null mice between PND8 and PND84 (pβ€Š=β€Š0.003). In tumors of Cdh11-null mice, cell death was decreased 5- to 10-fold (p<0.03 for all markers), while proliferation in vivo remained unaffected (pβ€Š=β€Š0.121). Activated caspase-3 was significantly decreased and Ξ²-catenin expression increased in Cdh11 knockdown experiments in vitro. These data suggest that Cdh11 displays tumor suppressor properties in vivo and in vitro in murine retinoblastoma through promotion of cell death

    Sleep Loss Produces False Memories

    Get PDF
    People sometimes claim with high confidence to remember events that in fact never happened, typically due to strong semantic associations with actually encoded events. Sleep is known to provide optimal neurobiological conditions for consolidation of memories for long-term storage, whereas sleep deprivation acutely impairs retrieval of stored memories. Here, focusing on the role of sleep-related memory processes, we tested whether false memories can be created (a) as enduring memory representations due to a consolidation-associated reorganization of new memory representations during post-learning sleep and/or (b) as an acute retrieval-related phenomenon induced by sleep deprivation at memory testing. According to the Deese, Roediger, McDermott (DRM) false memory paradigm, subjects learned lists of semantically associated words (e.g., β€œnight”, β€œdark”, β€œcoal”,…), lacking the strongest common associate or theme word (here: β€œblack”). Subjects either slept or stayed awake immediately after learning, and they were either sleep deprived or not at recognition testing 9, 33, or 44 hours after learning. Sleep deprivation at retrieval, but not sleep following learning, critically enhanced false memories of theme words. This effect was abolished by caffeine administration prior to retrieval, indicating that adenosinergic mechanisms can contribute to the generation of false memories associated with sleep loss

    Nuclear Entry of Activated MAPK Is Restricted in Primary Ovarian and Mammary Epithelial Cells

    Get PDF
    The MAPK/ERK1/2 serine kinases are primary mediators of the Ras mitogenic signaling pathway. Phosphorylation by MEK activates MAPK/ERK in the cytoplasm, and phospho-ERK is thought to enter the nucleus readily to modulate transcription.Here, however, we observe that in primary cultures of breast and ovarian epithelial cells, phosphorylation and activation of ERK1/2 are disassociated from nuclear translocalization and transcription of downstream targets, such as c-Fos, suggesting that nuclear translocation is limited in primary cells. Accordingly, in import assays in vitro, primary cells showed a lower import activity for ERK1/2 than cancer cells, in which activated MAPK readily translocated into the nucleus and activated c-Fos expression. Primary cells express lower levels of nuclear pore complex proteins and the nuclear transport factors, importin B1 and importin 7, which may explain the limiting ERK1/2 import found in primary cells. Additionally, reduction in expression of nucleoporin 153 by siRNA targeting reduced ERK1/2 nuclear activity in cancer cells.ERK1/2 activation is dissociated from nuclear entry, which is a rate limiting step in primary cells and in vivo, and the restriction of nuclear entry is disrupted in transformed cells by the increased expression of nuclear pores and/or nuclear transport factors
    • …
    corecore